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Abstract

This is a concise introduction to using R for reproducible statistical analyses.
It offers a guide and reference for researchers who want to perform statistical
analyses in R or write reproducible reports in R Markdown but are new to
the software or have not used it for some time. They want it done as soon as
possible and their data is ready for analysis.
Instead of a bottom-up introduction to R and R Markdown, this paper
presents examples, which researchers can adapt for their own use. Imitate
and apply! R code is shown that can be adapted by changing names of data
sets and variables. This document itself is written in R Markdown. Just
download the R Markdown document (https://wdenooy.github.io/Switch2R/
HelpMyCollaboratorUsesR.Rmd) to see how things are done.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.
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1 Why Use R?

Why Use R? Because you want to be one of the nerds. Instead of publicly acknowledging
this deep-felt need, you resort to arguments such as:

• I want to be up-to-date. The latest developments in data handling and analysis are
implemented (first) in R.

• I want to do all my work in one environment. From data scraping via all kinds of analyses
to publishing papers and books, all can be done in R.

• I want my analyses to be reproducible. All steps from data cleaning to final results can be
specified and documented in one document in R.

• I want maximum flexibility and full control of my analyses, tables, and figures.
• I want to use free, open source software, so everybody can check and improve my work.
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2 Start Working with R

In contrast to SPSS, R (R Core Team, 2019) is not a single software package (well, neither
is SPSS but we usually install all licensed SPSS parts) and it does not have an attractive user
interface. Working with R, you may have to install additional packages (also called libraries)
for doing the things that you want to do. A more user-friendly interface to R is provided by
RStudio, which is free like R. Let us install both R and RStudio, learn how to install additional
packages, and how to operate R from within RStudio.

2.1 Install or update R

On your private computer or UvA self-support laptop, download and install R directly
from https://cloud.r-project.org/.

• Download the R version for your operating system: Linux, (Mac) OSX, or Windows.
• Select the base package (or click install R for the first time).
• Download and install it.

For a UvA-supported laptop:

• Install R from the Software Center. Be sure to select the staff version (R-Project MDW ),
which allows installing packages (Section 2.6) locally on your computer.

• Install RStudio from the Software Center.

Use the same procedure to update to a newer version of R. If you update R, you do not
have to update RStudio (or the other way around).

If you want to know more about R and the organization behind R (CRAN), visit https:
//www.r-project.org/.

2.2 Install RStudio

When R has been installed, you can install RStudio (Desktop, Open Source License) from
http://www.rstudio.com/download:

• Select your operating system.
• Download and install.

Allow RStudio to install additional packages when it asks for permission to do so.

2.3 Create an RStudio Project

When you start working on a new project, create a new RStudio project. A project tells
RStudio where to store and find files that you create.

Create a new project:

• Use the menu File>New Project. . . or the Create a project button.
• Select New Directory to start a project in a brand new working directory or select Existing

Directory to create a new project in an existing directory.

The directory name is the name of the project. It is called Switch2R in Figure 1.

https://cloud.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
http://www.rstudio.com/download
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When you start RStudio, R starts automatically. The project that was open when you
last closed RStudio will be reopened. If you want to open another project, use Open Project. . .
in the File menu or use the drop-down list of projects in the top-right of the RStudio interface.

Figure 1 shows the main panels of the RStudio interface with a project opened. It features
a syntax file demonstrating some R commands that are discussed in Section 2.4.

Figure 1 . Main panels of the RStudio user interface.

2.4 Running R Commands within RStudio

RStudio (and R) does not have a menu offering all possible data manipulations and
analyses. Instead, you have to type commands.

2.4.1 Commands are functions. The general R layout of a command:

y <- f(x, arg = z)

This command means: Do something (function f(arg = z)) to x and save the result in y.

Both x and y can be a data set, a single value, a vector (series) of values, (code to create)
a plot, analysis results, and so on. An important difference between R and SPSS is that R stores
analysis results in such a way that you can use them in a next step of the analysis. You can
extract the results that you are interested in and use them in calculations, tables, or plots (see
Section 3). This gives you maximum flexibility and full control.
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Let us refer to x and y as data objects.

If the left-hand data object y:

• does not exist: a new data object is created in the project environment.
• exists: data object is overwritten in the project environment. There cannot be more than

one data object with the same name.
• is not named: output is sent to the screen (console or plot area).

If no function is specified as in y <- x, the data object (x) will be simply copied to another
data object or to the screen, depending on y.

2.4.2 Options are arguments to functions. A function can take more input from
the user than just a data object (x). Additional input are arguments that have a name (arg,
for example). The arguments for a function and their default values are listed in the help for
the function (the vignette). The user may specify the value of arguments or rely on the default
settings. For example, the mean() function does not remove missing values (NA in R) as default:
na.rm = FALSE. If there is a missing value, the resulting mean is a missing value. That is great
to warn you about missing values, but you would probably want to remove them. Set the na.rm
= argument to TRUE (note the capitals).

Separate arguments and the data object by commas!

Sometimes, you can supply more than one value for an argument. For example, the
quantile() function can calculate several quantiles in one go. If you have to specify more than
on value, enumerate them within the c() function, which creates a vector or list.

Below are some examples of commands and the textual output that the summary function
sends to the console, which also feature in Figure 1. Note that R is case-sensitive: uppercase
letters are considered different letters than lowercase letters.
# Note that this code chunk is not executed (eval = FALSE).

# Copy the student sleep data set (always available in R) to a data object that
# we can inspect in the environment.
sleepdata <- sleep #no function, so just a copy

# Show summary information about this data set to the console.
summary(sleepdata) #we apply a function but do not store the results

# Store the mean of extra sleeping time.
# Note that we use $ to identify a variable within the sleep data set.
# First, inspect help for the mean function: ? plus function name.
?mean
# Second, store the non-trimmed mean (default), ignoring missing values (NA).
mean_sleep <- mean(sleepdata$extra, na.rm = TRUE) # na.rm stands for NA remove.

# Calculate the quartiles of extra sleeping time.
quartiles <- quantile(sleepdata$extra, probs = c(0.25, 0.5, 0.75))

2.4.3 Data frames are lists of variables. The mean() and quartiles() functions
require a variable: extra sleeping time (extra) in the example above. Usually, variables are
stored in a data frame. A data frame is (more or less) a list of variables.

In R, you can retrieve an item from a list with the $ character.
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We get the extra sleeping time variable (extra) from the sleepdata data frame by first
specifying the name of the data frame, adding a dollar sign, and finally the name of the variable
(list item): sleepdata$extra. If you are typing a command at the R prompt in RStudio, a
popup menu will list the items that are available once you add the dollar sign to the name of a
data frame that is present in the environment.

Results from statistical analyses (Section 3 and on) are also stored as lists. We can use
the dollar sign to extract the parts of the results that we are interested in.

2.4.4 A script is a syntax file. Commands can be typed after the prompt (>) in
the console. Press Enter to execute the command.

It is more efficient, however, to create a syntax file (called a script in R) and type the
commands and comments in this file. The script file can be saved and reopened in the next R
session. Select one or more commands in the syntax file and press Ctrl-Enter or Cmd-Enter to
execute them.

Create a new script file:

• Use the File menu.
• Select New File.
• Select R Script.

Save script files in the default directory (this is the working directory) and use the default
file extension (.R).

Reopen a saved script file:

• If the project is not open yet, open it (File > Open Project. . . ).
• Open the script file by clicking it in the Files tab (bottom-right panel of RStudio).

Section 5.1 discusses a third option for running commands, which integrates code and
text.

2.5 Recommended RStudio settings

Figure 2 . Workspace settings in the Tools menu
under Global Options.

A data object created by an R com-
mand is saved in memory, which is called the
project’s environment. Data objects in the
environment are directly accessible to R.

When you exit RStudio (and R), the
data objects in the environment are deleted:
memory is cleared. It is possible to save all
data objects in memory as a file on disk, which
is called a work space, with the default file
extension .RData.

Actually, RStudio saves the work space
by default when you exit RStudio. This may
sound great but it is strongly recommended
NOT to save the work space. Your R code in
the syntax file should create all data objects
that you need. Your work space, however, may
contain additional objects that you created
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with the console or with syntax commands
that have been removed. If you rerun the
syntax when you reopen an RStudio project,
you can check that all necessary data objects are created. If not, you will receive an error
message.

For this reason, it is a good idea to turn off saving work spaces when exiting RStudio and
reloading them when reopening a project in RStudio. To this end, adjust the settings in the
Tools menu under Global Options as indicated in Figure 2.

2.6 Install and Load Packages

The base installation of R includes several important packages, such as the base package
and the stats package, which contains many statistical analyses. These packages are loaded
when you start R, so they are always ready for usage. Additional packages must be installed
once but they must be loaded in every new R session that uses them.

Figure 3 . The RStudio dia-
log for installing packages.

The easiest way to install a package is the Install Pack-
ages. . . option in the Tools menu of RStudio. This opens a
dialog box in which you can enter the package names (Fig. 3).
Auto-completion will assist you. If a package is not available here,
you have to install it directly from a web site. This is the case
for the papaja package (see the code below).

While installing a package, RStudio may ask: “Do you want
to install from sources the package which needs compilation?” As
a rule, answer no to this question.

Note the Install to Library: field. Here you can see where
the packages are placed, which is where R looks for them. By
default, the directory is named after the version number of R that
you are using. As a consequence, updating to a new R version will create a new directory for the
packages and R will look for packages in this new directory. Packages installed in the directory
for a previous R version are not automatically copied to the new directory. Do this by hand
or re-install all packages. Re-installing them has the additional advantage of working with the
latest version.

Installed packages must be loaded in a new R session before they can be used. The code
below loads the tidyverse package (Wickham, 2017) and the papaja package (Aust & Barth,
2019). The tidyverse package actually loads a set of packages that allow us to handle data
in a transparent way. The papaja package offers functions for creating tables and figures that
conform to APA6 standards.
# Load the packages that you need. Not executed here because the packages were
# loaded in the first code chunk.

# Install the tidyverse package from CRAN (only once!).
install.packages("tidyverse")
# Load a set of R libraries for consistent and transparent data handling and
# graphing.
library(tidyverse)

# papaja cannot be installed from CRAN, so we need the devtools package to
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# install it.
# Install devtools package (from CRAN, only once!).
install.packages("devtools")
# Install the stable development verion of papaja from GitHub
devtools::install_github("crsh/papaja")

# Load an R library (package) for APA6-style tables, figures, and statistical
# results formatting.
library(papaja)

Don’t mind warnings that a package was built under another version of R, but do update
R, RStudio, and packages regularly. There is an update button in the Packages tab of the
bottom-left panel of the RStudio screen.

Loading a package, R may inform you of conflicts. Different packages can use the same
name for a function. R uses the function that was last loaded if you do not specify a package.
For example, the filter() function appears both in the dplyr and stats packages. Package
dplyr (Wickham, François, Henry, & Müller, 2019) is part of the tidyverse set, which was
loaded later than the stats package, which was loaded when R started. As a result, R uses
filter() from dplyr instead of from stats. If you would like to use the filter() function in
the stats package, you have to add the package name to the function as in stats::filter()
(note the two colons).

2.7 Getting Help

Read more about installing and using R and RStudio in the (web) books Modern Dive
(Ismay & Kim, 2019) and Getting used to R, RStudio, and R Markdown. The latter book has a
nice section on common programming errors in R. I bet that you will encounter some of these
problems, for example using = for “is equal to” where you must use ==.

The R code in Section 2.4 shows that running a function with a question mark added to
the start, e.g., ?mean, opens the help vignette about the function. As an alternative, you can
enter the function name in the search box of the help tab in the RStudio interface. In addition,
pressing F1 (Mac: fn-F1) while the cursor is on a typed function name also opens the help
vignette. For getting help in these ways, the package containing the function must have been
loaded.

Of course, you can always Google your question. Start your search string with the capital
letter R and a space. For instance, searching for “R chisquare” will quickly lead you to the
function for a chi-squared test in R (Section 4.2).

3 My First Statistical Analysis In R: Linear Regression

This section applies linear regression to demonstrate the principles and peculiarities of
statistical analyses in R.

3.1 Open a Data Set

Our example data set addresses attitudes towards global warming. The data set was
collected by Erik Nisbet and it is available at Andrew Hayes’ website.

https://moderndive.com/1-getting-started.html
https://ismayc.github.io/rbasics-book/3-rstudiobasics.html
https://ismayc.github.io/rbasics-book/6-errors.html
http://afhayes.com/introduction-to-mediation-moderation-and-conditional-process-analysis.html
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The data set is available in several formats including SPSS and CSV. The SPSS file
(glbwarm.sav) has variable and value labels but the CSV file (glbwarm.csv) only has numeric
values. Download the data sets and save them in your R project directory.

3.1.1 Import SPSS (or STATA or SAS) data. The recommended function to
load an SPSS data file in R is read_spss() in the haven package (Wickham & Miller, 2019).
This function reads SPSS data and turns it into a data frame, which is the R version of a data
matrix. The haven package can also import STATA (DTA) and SAS data files.
# Load the haven package for reading SPSS data files.
library(haven)

# Read the SPSS data file and store it in glbwarm_spss.
# Note: The data file glbwarm.sav must be present in the project directory.
glbwarm_spss <- read_spss("glbwarm.sav")

Inspect the data object glbwarm_spss in the Environment tab of the RStudio interface.
Click on the little “play” button preceding the data frame in the Environment panel to see the
variables and their features. The variable and value labels are preserved as attributes (attr). R,
however, normally does not use attributes. If you want R to handle the value labels in analyses,
it is best to turn the variables into factors.

In R, a factor is a categorical variable with labels for the values. In contrast to
SPSS, you must use the value labels instead of the values if you want to select or
manipulate particular values.

The haven package contains the command as_factor() to turn all variables with value
labels into factors. Note the underscore in as_factor(). There is another function as.factor()
in the base package, which uses a dot. This happens more often. The tidyverse package has
improved versions of basic functions and it replaces dots in function names by underscores.
# Change variables with value labels into factors.
# Note: We overwrite the data frame glbwarm_spss now.
glbwarm_spss <- as_factor(glbwarm_spss)

If you describe the new data frame (use the command summary(glbwarm_spss)), the
value labels and their frequencies are shown for the ideology, sex, and partyid variables.

3.1.2 Import CSV data. CSV (Comma Separated Values) is a very general file
format, which is often used to exchange data between applications. It uses plain text format, so
you can easily view the contents of a CSV file.

There is a complication with CSV files. Countries that use the comma as decimal separator
tend not to use the comma to separate fields. Instead, a semicolon is used. For this reason, the
readr package (Wickham, Hester, & Francois, 2018), which is part of tidyverse, contains two
commands for reading CSV files: read_csv() for comma-delimited files and read_csv2() for
files using semicolons between fields. Open the CSV file in a text editor to see which delimiter is
used if you are not sure.
# Read the CSV file and store it in a data frame.
# Note: The data file glbwarm.csv must be present in the project directory.
glbwarm_csv <- read_csv("glbwarm.csv")

## Parsed with column specification:
## cols(
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## govact = col_double(),
## posemot = col_double(),
## negemot = col_double(),
## ideology = col_double(),
## age = col_double(),
## sex = col_double(),
## partyid = col_double()
## )

If you read the csv file with one of the read_csv functions, the function guesses the type
of each variable:

• numeric: double for numbers with decimal places or integer for numbers without decimal
places.

• logical: TRUE or FALSE (note the capitals), which are treated as 1 and 0 in calculations.
• date, time, or date-time.
• factor: categories with labels.
• character for textual data.

In this example, all variables are read as numeric with (possibly) decimal places. For
ideology, sex, and partyid we only have numbers. We must remember the meaning of these
numbers ourselves.

If you want to have the value labels instead of the numeric codes for the categorical
variables, you can export the SPSS file to CSV (in SPSS: File > Export > CSV Data) with
the option Save value labels where defined instead of data values checked. This CSV, named
glbwarm2.csv is available here. If you import this data file with the read_csv() function,
ideology, sex, and partyid are string variables. In contrast to SPSS, R handles string variables
as categorical variables, just like factors. The code below shows how you can set the types of
variables with read_csv().
# Read the CSV file exported from SPSS and store it in a data frame.
# Note: The data file glbwarm.csv must be present in the project directory.
glbwarm2_csv <- read_csv("glbwarm2.csv",

col_types = cols(
govact = col_double(),
posemot = col_double(),
negemot = col_double(),
ideology = col_character(),
age = col_integer(),
sex = col_character(),
partyid = col_character()
)

)

3.1.3 Import JSON data. The package jsonlite (Ooms, Temple Lang, & Hilaiel,
2018) contains functions, read_json() among others, to read JSON data and transform the
data into R data structures (Ooms, 2014).

3.2 Estimating a Regression Model

We can estimate linear regression models with the lm() function (for linear model) in the
stats package. The regression model that we want to estimate must be formulated as an R

https://wdenooy.github.io/Switch2R/glbwarm2.csv
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formula. In an R formula, a tilde (~) separates the outcome(s) from the predictor(s).

If we want to predict the opinion on government intervention (variable govact) from
positive and negative emotions on global warning (posemot and negemot), age, and ideology,
the R formula would be:

govact ~ posemot + negemot + age + ideology

In addition to a formula, we have to specify the data frame containing the variables in the
data = argument. The code below estimates this regression model, using the SPSS data with
categorical variables transformed into factors. Note that we can include factors (or character
variables) directly in the formula. The lm() function will create dummy variables automatically,
using the first factor level (value) as the reference group.

It is possible to transform variables within the regression formula. For example, age
(in years) is divided by 10 to obtain age in decades. This will increase the effect size of age,
which otherwise is very close to zero. Finally, note that we store the results as a data object
(govact_model) instead of sending them to the screen, as SPSS would do.
# A regression model predicting opinions about government intervention.
# The results are saved as data object "govact_model".
govact_model <- lm(govact ~ posemot + negemot + I(age/10) + ideology,

data = glbwarm_spss)

The data object storing the results contains information about how the model was estimated
and all estimates. It even includes the original variables. Have a look at this data object in the
environment tab of the RStudio interface. It is a list containing the coefficients, the residuals,
which are series (arrays) of numbers of different length (10 coefficients, 815 residuals). The list
also contains single numbers, like the degrees of freedom of the residuals (df.residual).

If we store the analysis results as a data object, we can extract the information that we
need at any time. Even better, we can use functions created by others to extract and present
the results.

3.3 Presenting Results

Storing the analysis results as a data object is all fine and well, but we want to see the
results. We need functions to extract the relevant results. Let us first tabulate the results and
plot them afterwards.

3.3.1 Basic tabular results. In general, the summary() function presents the most
basic results. For a linear regression model, it tells us the model formula, some statistics for the
residuals, the values of the regression coefficients, and model fit statistics (R2 and an F test).
# Show a table of regression results as plain text.
summary(govact_model)

##
## Call:
## lm(formula = govact ~ posemot + negemot + I(age/10) + ideology,
## data = glbwarm_spss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6323 -0.6885 0.0570 0.7136 3.4928
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.68618 0.24505 15.042 < 2e-16
## posemot -0.02732 0.02800 -0.976 0.3294
## negemot 0.43237 0.02639 16.383 < 2e-16
## I(age/10) -0.01340 0.02376 -0.564 0.5729
## ideologyLiberal -0.12338 0.20542 -0.601 0.5483
## ideologySomewhat Liberal -0.11735 0.20928 -0.561 0.5751
## ideologyModerate; Middle of the Road -0.45177 0.18803 -2.403 0.0165
## ideologySomewhat Conservative -0.48754 0.20822 -2.341 0.0195
## ideologyConservative -0.98020 0.21093 -4.647 3.93e-06
## ideologyVery Conservative -1.34930 0.23400 -5.766 1.16e-08
##
## (Intercept) ***
## posemot
## negemot ***
## I(age/10)
## ideologyLiberal
## ideologySomewhat Liberal
## ideologyModerate; Middle of the Road *
## ideologySomewhat Conservative *
## ideologyConservative ***
## ideologyVery Conservative ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.063 on 805 degrees of freedom
## Multiple R-squared: 0.3957, Adjusted R-squared: 0.389
## F-statistic: 58.58 on 9 and 805 DF, p-value: < 2.2e-16

The output of the print() function is not fit for publication. There are two ways of
obtaining publication-ready tables: Using dedicated packages that create finished tables or
creating the table yourself. The next two subsections present the two ways.

3.3.2 APA6-style or journal-style tables. Your problem has been experienced by
many other researchers, so it is quite likely that someone has created an R package that solves
your problem. Indeed, several packages have been published that create camera-ready tables
summarizing statistical results.

Usually, these packages use LaTex (or TeX more generally) to create camera-ready tables
because this language offers greatest control over the appearance of the table. If you are used to
creating documents in (La)TeX, that is fine. If you don’t, you had best use RMarkdown (see
Section 5) as your word processor for research reports.

The papaja package contains functions to create tables of statistical results that conform
to the APA6 specifications. It works best if you use the RMarkdown template for an APA6-style
paper, which is actually used for the web site or PDF that you are reading right now (see Section
5.2).
# Load the papaja package.
library(papaja)
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# Step 1: Extract summary information from the regression results data object.
govact_results <- apa_print(govact_model)

# Step 2 (optional): Rename the predictors with the tidyverse package.
# The predictor names are a variable (predictor) in the results table (table) in
# the list created by apa_print(), which is named govact_results here.
govact_results$table$predictor <- recode(

govact_results$table$predictor, #variable to be recoded
"Posemot" = "Positive emotions", #old vaue = new value
"Negemot" = "Negative emotions",
"Iage/10" = "Age (in decades)"
#all other values remain the same

)

#Step 3: Extract and format the table of regression coefficients.
apa_table(govact_results$table, #select the table

caption = "Predicting citizens' opinion about government
intervention concerning climate change.",
note = "Just to show that it is easy to add a note.",
placement="hbt", #order: exact spot (h), page bottom (b), page top (t)
font_size = "small",
escape = TRUE
)

Table 1
Predicting citizens’ opinion about government intervention concerning climate
change.
predictor b 95% CI t(805) p

Intercept 3.69 [3.21, 4.17] 15.04 < .001
Positive emotions -0.03 [−0.08, 0.03] -0.98 .329
Negative emotions 0.43 [0.38, 0.48] 16.38 < .001
Age (in decades) -0.01 [−0.06, 0.03] -0.56 .573
IdeologyLiberal -0.12 [−0.53, 0.28] -0.60 .548
IdeologySomewhat Liberal -0.12 [−0.53, 0.29] -0.56 .575
IdeologyModerate; Middle of the Road -0.45 [−0.82, −0.08] -2.40 .017
IdeologySomewhat Conservative -0.49 [−0.90, −0.08] -2.34 .019
IdeologyConservative -0.98 [−1.39, −0.57] -4.65 < .001
IdeologyVery Conservative -1.35 [−1.81, −0.89] -5.77 < .001

Note. Just to show that it is easy to add a note.

If you are looking at web version of Table 1, you will probably not be satisfied with the
way the able looks. The table uses two different fonts and the lines are not where they should
be according to APA6. The PDF version is much better. Fortunately, you are going to submit
the PDF, not the web version of your paper.

The apa_table() function can also combine results from two or more regression models
in one table. Results for different models are stacked: the first set of rows contain the results for
the first model, the second set of rows contain the second model, and so on. The more familiar
table with the models spread over different columns (side-by-side) cannot be made with this
package.

The stargazer package (Hlavac, 2018) can create side-by-side tables It can create tables
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in formats required by some important sociological, political sciences, and economics journals.
Unfortunately, it does not support the APA6 style. In contrast to the papajapackage, it can
also create HTML tables but it cannot create Word tables (import the PDF or HTML table in
Word). It is possible to send the table created by stargazer() to a file, so you can include the
code from the file in your (LaTeX or HTML) document.

You can create a Word document with a regression results table in APA6 format with the
apa.reg.table() function in the apaTables package (Stanley, 2018). Note that it cannot show
models side-by-side. This package can also create correlation and ANOVA tables. The texreg
package (Leifeld, 2017) can create and save a table with several regression models side-by-side
as PDF (texreg()) or HTML (htmlreg()).

3.3.3 Custom tables with the broom, knitr and kableExtra packages.

This section is meant for readers who want to have full control over the tables they
create.

Instead of using packages that may produce tables that are not exactly what you want, you
can create results tables yourself using the broom package (Robinson & Hayes, 2019), which is
part of tidyverse but it must be loaded separately. The broom package extracts relevant results
from statistical data objects as a data frame. This data frame can be saved as CSV file, which can
be manually transformed into publication-ready tables using your favorite spreadsheet or word
processor software. As an alternative, it can be manipulated and printed as a publication-ready
table with R using the general knitr package (Xie, 2019b), with finer details managed by the
kableExtra package (Zhu, 2019).

It takes a some time to learn using knitr but it is a good investment because you are
probably going to use knitr anyway for tables that do not contain statistical results. The nice
thing about knitr is that it gives good results in HTML, LaTeX, and Word.

The tidy() function in the broom package extracts the estimated coefficients and associated
test statistics and confidence levels from the data object containing statistical results. There is
a version of this function for many types of statistical analyses (more than apa_print() can
handle). You can just use tidy() because it will recognize the type of statistical analysis and
use the appropriate version to extract the results for this type of analysis.

Let us estimate an additional regression model with an interaction effect of age with
negative emotions. Note how easy it is to specify an interaction effect.
# Load the broom package, which converts statistical (results) objects.
library(broom)

# Estimate a second regression model with an interaction and store the results.
govact_model2 <- lm(govact ~ posemot + negemot*I(age/10) + ideology,

data = glbwarm_spss)

# Store the regression coefficients in a data frame with broom::tidy.
govact_tidy2 <- tidy(govact_model2, #the data object created with lm()

conf.int = TRUE, #add confidence interval limits
conf.level = 0.95 #confidence level
)

# Show the regression results with the kable() function in the knitr package.
kable(govact_tidy2, #the regression coefficients
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#the number of digits for all seven columns
digits = c(0, 2, 2, 2, 3, 2, 2),
caption = "Unedited statistical results of the interaction model

extracted with tidy() and shown with kable().",
format.args = list(zero.print = NULL),
booktabs = TRUE #layout with header and bottom lines in PDF output
)

Table 2
Unedited statistical results of the interaction model extracted with tidy() and shown with kable().
term estimate std.error statistic p.value conf.low conf.high

(Intercept) 4.86 0.37 12.99 0.000 4.12 5.59
posemot -0.02 0.03 -0.77 0.443 -0.08 0.03
negemot 0.11 0.08 1.32 0.187 -0.05 0.27
I(age/10) -0.24 0.06 -4.01 0.000 -0.36 -0.12
ideologyLiberal -0.15 0.20 -0.74 0.463 -0.55 0.25

ideologySomewhat Liberal -0.13 0.21 -0.65 0.517 -0.54 0.27
ideologyModerate; Middle of the Road -0.49 0.19 -2.64 0.009 -0.86 -0.13
ideologySomewhat Conservative -0.48 0.21 -2.34 0.019 -0.89 -0.08
ideologyConservative -0.95 0.21 -4.56 0.000 -1.36 -0.54
ideologyVery Conservative -1.35 0.23 -5.84 0.000 -1.81 -0.90

negemot:I(age/10) 0.06 0.02 4.11 0.000 0.03 0.09

# Alternatively, save the tidied results data frame as CSV for use in, for
# example, MS Excel and MS Word.
write_csv(govact_tidy2, "myresultstable.csv")
# Note: use write_csv2() if you want semicolons instead of commas to separate
# columns, which is required if your computer uses comma as decimal separator.

This table is not as it should be according to the APA6 standard. The dependent variable
should be mentioned, the column names should be different, not all columns should be shown
and the lower and upper limits of the confidence interval should be merged, p values below
.005 should not be rounded to .000. In addition,the predictor variable names could be more
informative. Finally, the model’s R2 and F values should be reported and significance levels
should be signaled with stars, which are explained in a note to the table.

This requires quite some data wrangling, which is exemplified in the code below. In
addition, we need the kableExtra package (Zhu, 2019) for additional formatting of the table
and adding a note.
# Use this code for your own purpose:
# 1. Change the name of the fitted model: replace govac_model2 everywhere.
# 2. Change the old and new names of variables/parameters in mutate().
# 3. Change the names in functions caption() and add_header_above().

# Required packages.
library(tidyverse)
library(broom)
library(knitr)
# Load the kableExtra package for fine-tuning the table.
library(kableExtra)
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# hide NA (missing) values in the table
options(knitr.kable.NA = '')

# The statistics for the model can be retrieved with broom::glance function.
govact_glance2 <- glance(govact_model2)
# We will append them later to the regression coefficients.

# Change the table of regression coefficients
# %>% is a pipe: the result of the preceding step is the input for the next
# step.
govact_tidy2 %>%

mutate(#change predictor variable names (case-sensitive!)
term= case_when( #the variable to be recoded

#if term equals old name = new name
term == "(Intercept)" ~ "Constant",
term == "posemot" ~ "Positive emotions",
term == "negemot" ~ "Negative emotions",
term == "I(age/10)" ~ "Age (in decades)",
term == "ideologyLiberal" ~ "Liberal",
term == "ideologySomewhat Liberal" ~ "Somewhat Liberal",
term == "ideologyModerate; Middle of the Road" ~ "Moderate",
term == "ideologySomewhat Conservative" ~ "Somewhat Conservative",
term == "ideologyConservative" ~ "Conservative",
term == "ideologyVery Conservative" ~ "Very Conservative",
term == "negemot:I(age/10)" ~ "Negative emotions*Age"
),

#join the lower and upper limits of the confidence interval
CI = #name of new variable

paste0( #collate
"[", #opening bracket
format( #lower limit as number with 2 decimal places

round(conf.low, digits = 2), #2 decimal places
nsmall = 2 #keep 0 if it is the 2nd decimal
),

", ", #comma
format( #upper limit as number with 2 decimal places

round(conf.high, digits = 2), #2 decimal places
nsmall = 2 #keep 0 if it is the 2nd decimal
),

"]" #closing bracket
),

#add new variable with significance stars
sig = case_when(

p.value < 0.001 ~ "$***$",
p.value < 0.01 ~ "$**$",
p.value < 0.05 ~ "$*$",
TRUE ~ "" #all remaining cases

)
) %>%
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#add rows with R2 and F
#dollar signs mark text as math (other font type)
bind_rows(

data.frame(
term = c("$R^2$", "$F$"),
estimate = c(

govact_glance2$r.squared,
govact_glance2$statistic

),
sig = c(

"",
case_when(

govact_glance2$p.value < 0.001 ~ "$***$",
govact_glance2$p.value < 0.01 ~ "$**$",
govact_glance2$p.value < 0.05 ~ "$*$",
TRUE ~ "" #all remaining cases

)
),
stringsAsFactors = FALSE

)
) %>%
#select the relevant columns (variables) in right order
select(term, estimate, sig, CI) %>%
#create a table from the data
kable( #the data come from the 'pipe',

digits = c(0, 2, 0, 0),
col.names = c("Variable", "B", "", "95\\% CI"),
align = "lrlc",
caption = "APA6 formatted statistical results extracted with tidy() and

shown with kable() and kableExtra().",
booktabs = TRUE, #nicer layout
escape = FALSE #pay attention to special characters
) %>%

kable_styling(
latex_options = c("hold_position")

) %>%
#add dependent variable as additional header
# (all 3 columns after the first column)
add_header_above(c(" ", "Opinion on government intervention" = 3)) %>%
footnote(general = paste0(

"$Note$. $N$ = ",
govact_glance2$df + govact_glance2$df.residual,
". $CI$ = confidence interval."
),
general_title = "",
symbol = "$*$ $p$ < .05. $**$ $p$ < .01. $***$ $p$ < .001."

)
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Table 3
APA6 formatted statistical results extracted with tidy() and shown with kable() and kableExtra().

Opinion on government intervention

Variable B 95% CI

Constant 4.86 ∗ ∗ ∗ [ 4.12, 5.59]
Positive emotions -0.02 [-0.08, 0.03]
Negative emotions 0.11 [-0.05, 0.27]
Age (in decades) -0.24 ∗ ∗ ∗ [-0.36, -0.12]
Liberal -0.15 [-0.55, 0.25]

Somewhat Liberal -0.13 [-0.54, 0.27]
Moderate -0.49 ∗∗ [-0.86, -0.13]
Somewhat Conservative -0.48 ∗ [-0.89, -0.08]
Conservative -0.95 ∗ ∗ ∗ [-1.36, -0.54]
Very Conservative -1.35 ∗ ∗ ∗ [-1.81, -0.90]

Negative emotions*Age 0.06 ∗ ∗ ∗ [ 0.03, 0.09]
R2 0.41
F 55.46 ∗ ∗ ∗
Note. N = 815. CI = confidence interval.
* ∗ p < .05. ∗∗ p < .01. ∗ ∗ ∗ p < .001.

It is possible to have models side-by-side (Table 4) but it requires some data wrangling. If
you want to see the code, download the R Markdown file that produces this paper. You can
adapt this code for your own applications.

Table 4
APA6 formatted statistical results extracted with tidy() and shown with kable() and kableExtra().

Opinion on government intervention

Model 1 Model 2

Variable B 95% CI B 95% CI

Constant 3.69 ∗ ∗ ∗ [ 3.21, 4.17] 4.86 ∗ ∗ ∗ [ 4.12, 5.59]
Positive emotions -0.03 [-0.08, 0.03] -0.02 [-0.08, 0.03]
Negative emotions 0.43 ∗ ∗ ∗ [ 0.38, 0.48] 0.11 [-0.05, 0.27]
Age (in decades) -0.01 [-0.06, 0.03] -0.24 ∗ ∗ ∗ [-0.36, -0.12]
Liberal -0.12 [-0.53, 0.28] -0.15 [-0.55, 0.25]

Somewhat Liberal -0.12 [-0.53, 0.29] -0.13 [-0.54, 0.27]
Moderate -0.45 ∗ [-0.82, -0.08] -0.49 ∗∗ [-0.86, -0.13]
Somewhat Conservative -0.49 ∗ [-0.90, -0.08] -0.48 ∗ [-0.89, -0.08]
Conservative -0.98 ∗ ∗ ∗ [-1.39, -0.57] -0.95 ∗ ∗ ∗ [-1.36, -0.54]
Very Conservative -1.35 ∗ ∗ ∗ [-1.81, -0.89] -1.35 ∗ ∗ ∗ [-1.81, -0.90]

Negative emotions*Age 0.06 ∗ ∗ ∗ [ 0.03, 0.09]
R2 0.40 0.41
F 58.58 ∗ ∗ ∗ 55.46 ∗ ∗ ∗
Note. N = 815. CI = confidence interval.
* ∗ p < .05. ∗∗ p < .01. ∗ ∗ ∗ p < .001.

https://wdenooy.github.io/Switch2R/HelpMyCollaboratorUsesR.Rmd


HELP, MY COLLABORATOR USES R! 18

3.3.4 Plots. It becomes more and more common to plot regression coefficients instead
of presenting them in a table. The coefplot package (Lander, 2018) can plot regression
coefficients for one or more models. It has an extensive set of options for changing the appearance
of the plot. Figure 4 and the accompanying R code showcase some options.
# Plot the regression coefficients with their standard errors using the
# coefplot package.

# Load the coefplot package.
library(coefplot)

# Plot of the regression coefficients of two models.
multiplot(Model1 = govact_model, Model2 = govact_model2, #the fitted models (renamed)

intercept = FALSE, #don't show intercept coefficient
title = "", #omit plot title
newNames = c("negemot" = "Negative emotions",

"posemot" = "Positive emotions",
"I(age/10)" = "Age (in decades)",
"negemot:I(age/10)" = "Negative emotions * Age"
),

plot.shapes=TRUE, plot.linetypes=TRUE,
dodgeHeight = 0.8 #distance between shapes
) +

theme_apa() +
theme(legend.position="bottom")

Positive emotions

Negative emotions

Age (in decades)

ideologyLiberal

ideologySomewhat Liberal

ideologyModerate; Middle of the Road

ideologySomewhat Conservative

ideologyConservative

ideologyVery Conservative

Negative emotions * Age
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Figure 4 . Unstandardized regression coefficients for a model without and a model with an
interaction effect. The fat and thin lines represent confidence intervals based on one and two
standard errors.

The plot created by coefplot is a ggplot2 plot. The ggplot2 package (Wickham et
al., 2019) is a versatile, widely used package. A nice feature of a ggplot2-plot is that we can
customize it further. In the code above, the APA plotting theme from the papaja package is
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added and the legend is re-positioned at the bottom of the figure. The plotting functions in
coefplot yield the data to be plotted instead of a plot if you add the option plot = FALSE.
With this data set, you can create your own custom plot with ggplot2.

If you want to have full control of your plots, learn ggplot2. The book R for Data Science
(Wickham & Grolemund, 2017) offers a concise introduction; it is available online. The details of
ggplot2 can be found in ggplot2, Elegant Graphics for Data Analysis (Wickham, 2009), which
has an online 3rd edition.

Plotting regression lines is another appealing way of presenting your results (Figure 5).
The visreg package (Breheny & Burchett, 2019) can do this. It can create ggplot2 plots, which
can be further customized. More extensive options are available in the effects package (Fox,
Weisberg, Price, Friendly, & Hong, 2019), but this package cannot produce ggplot2 plots.
# Plot the effect of negative emotions for different age groups.

# Load the visreg package.
library(visreg)

# Create a plot
visreg(govact_model2,

xvar = "negemot", #variable for the x axis
by = "age", #different lines for age groups
jitter = TRUE, #negemot has few (discrete) values
overlay = TRUE, #show lines in one plot
gg = TRUE #use ggplot2
) +

theme_apa() + #add theme
#set the axis labels
labs(x = "Negative emotions",

y = "Opinion on government intervention")
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Figure 5 . The effect of negative emotions at different age levels, 95% confidence intervals, and
partial residuals. Note that The age groups are defined by default at the 10th, 50th, and 90th
percentiles. Partial residuals have the color of the closest percentile.

https://r4ds.had.co.nz/data-visualisation.html
https://ggplot2-book.org/
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Residual plots are commonly used to check regression assumptions. A fitted regression
model contains the residuals. The residuals of the second regression model estimated in this
section are available as govact_model2$residuals.

The car package offers the residualPlot() function to plot the (unstandardized) residuals
against the (unstandardized) fitted (predicted) values. The related residualPlots() function
(note the plural) also displays the residuals against each of the predictor variables. Note that
these are not ggplot plots. If you are looking for additional checks and tests for a regression
model, consult the car package.
# Pplot the residuals against the predicted values.

# Load package car.
library(car)

residualPlot(govact_model2,
quadratic = FALSE)
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Figure 6 . A residuals plot for the model predicting opinion about government intervention from
political ideology, positive emotions, and the interaction between negative emotions and age.

4 Other Common Statistical Analyses

R packages offer more statistical analyses than we will probably ever use. In addition,
there can be several packages for the same type of analysis. The main problem: How do we find
the right package?

Volunteers maintain overviews of packages that are dedicated to a particular task, which
are called task views. An overview is available at https://cran.rstudio.com/web/views/. The
SocialSciences task view is a good place to start. It reviews packages for estimating general
linear models (regression, analysis of variance) and for analyzing categorical data.

The most commonly used model types are briefly discussed below in alphabetical order.

https://cran.rstudio.com/web/views/
https://cran.rstudio.com/web/views/SocialSciences.html
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4.1 Analysis of Variance (ANOVA)

The aov() function in the stats package fits an analysis of variance model. It actually
uses the lm() function, so it can also handle numeric predictors, in which case it offers analysis
of covariance. Apply the anova() function to the results of aov() or lm() to obtain an ANOVA
table with F tests. If anova() is applied to two or more fitted models, the F change test is
calculated. The models should be nested, otherwise the F change test does not make sense.

The aov() function uses a “Type I” test and it should only be applied to balanced designs.
For “Type II” and “Type III” tests or unbalanced designs, use the Anova() function in the car
package. Just like the anova() function, the model must first be estimated with lm(), aov(),
or another linear model.

These functions, as well as manova() in the stats package, can also be used for multivariate
models (more than one dependent variable) and repeated measures designs.

The papaja package contains several plots for factorial designs that conform to the APA
standard. The visreg package can be used to visualize results.

4.2 Chi-squared Tests

A chi-squared test of independence in a contingency table can be executed with the
chisq.test() function in the stats package. Fisher’s exact test is available through the
fisher.test() function in the same package. Both tests require the specification of two
categorical variables with the x = and y = arguments.

For example, the following command executes a chi-squared test on the independence of
political ideology and sex in the global warming data set and stores the result in a data object:

fit_chisq <- chisq.test(x = glbwarm_spss$ideology, y = glbwarm_spss$sex)

Note that the data frame must be specified for both variables.

The fitted model is (stored as) a htest object, which includes both statistical results
(chi-squared value, degrees of freedom, and p value) and the contents of the contingency table:
observed frequencies, expected frequencies under the null hypothesis of independence, residuals,
and standardized residuals. You can inspect the contingency table by simply sending the list
item to the screen, for example, fit_chisq$observed or fit_chisq$stdres. The code below
creates an APA6-style contingency table.
# Use this code for your own results:
# 1. Change the names of the data frame and variables in chisq.test().
# 2. Change the category names of the columns in select() and
# add_header_above(): replace female and male.
# If there are more than two columns (values), add those.
# 3. Change the table's caption()

# Create a contingency table with observed frequencies and standardized
# residuals.

# Execute the chi-squared test.
fit_chisq <- chisq.test(x = glbwarm_spss$ideology, y = glbwarm_spss$sex)

# Create a table in APA6 style.
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data.frame( #create a data frame from
#residuals matrix added to observed freqs matrix
cbind(fit_chisq$observed, fit_chisq$stdres)
) %>% #send to next function

#reorder the columns (variables)
select(female, female.1, male, male.1) %>%
#format as table
kable(caption = "Observed frequencies and standardized residuals

for ideology by sex.",
col.names = rep("", 4), #suppress variable names
#the number of digits for all columns
digits = c(0, 2, 0, 2),
format.args = list(zero.print = NULL),
booktabs = TRUE #layout with header and bottom lines
) %>%

kable_styling(
#don't move table to top or bottom of a page
latex_options = c("hold_position")

) %>%
#add observed versus standardized residuals header
add_header_above(c("", rep(c("Observed", "St.Residual"), 2))) %>%
#add sex as additional header
# (2 columns for female, 2 for male)
add_header_above(c("", "Female" = 2, "Male" = 2)) %>%
#footnote with test result, formatted with the papaja::apa_print function
footnote(general = paste0("$Note$. ",

apa_print(fit_chisq, n = sum(fit_chisq$observed))$statistic),
general_title = "" #suppress standard "Note:"
)

Table 5
Observed frequencies and standardized residuals for ideology by sex.

Female Male

Observed St.Residual Observed St.Residual

Very Liberal 20 0.54 16 -0.54
Liberal 64 2.03 42 -2.03
Somewhat Liberal 47 -0.02 45 0.02
Moderate; Middle of the Road 177 2.05 141 -2.05
Somewhat Conservative 47 -1.10 55 1.10

Conservative 45 -1.82 60 1.82
Very Conservative 17 -3.23 39 3.23
Note. χ2(6, n = 815) = 20.11, p = .003

The same functions can be used to apply a one-sample chi-squared test or goodness-of-fit
test. The x = argument must specify the observed frequencies of the categories on the test
variable. The base package function table() does the job. Because there is no second variable,
we do not use the y = argument. Instead, we specify the hypothesized population proportions
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(argument p =) for the categories. Use the c() function to combine the proportions and ensure
that they are in the right order. For example, the following code tests the null hypothesis that
half of the population is female and the other half male:

fit_chisq2 <- chisq.test(x = table(glbwarm_spss$sex), p = c(0.5, 0.5))

The fitted model is stored as a htest object.

4.3 Regression: Logistic, Poisson, Negative binomial, Multinomial

Some regression models for dependent variables that are not numeric and (in principle)
continuous can be estimated with the glm() function in the stats package. GLM stands for
General Linear Model. The regression model is specified in the same way as the linear regression
model discussed in Section 3.2. The only addition is the type of linear predictor and error
distribution (family). The most common families are:

• binomial(link = "logit") for logistic regression,
• poisson(link = "log") for Poisson regression,
• quasipoisson(link = "log") for overdispersed Poisson regression.

A fitted glm() model is very like a fitted lm() model, so functions for displaying coefficients
(coefplot package) and fitted regression lines (visreg package) also work for these models. The
functions in the carpackage such as residualPlot(), however, only works for linear models.

Negative-binomial regression models can be fit with the glm.nb() function in the MASS
package. This function follows the same logic as the lm() function for ordinary regression
models. Instead of a model family, you can specify a link function as an argument. A fitted
negative-binomial model has a structure that is similar to the results of lm() and glm(). The
car and coefplot packages, however, cannot handle this type of model.

The MASS package also contains a function for ordered logistic regression, namely polr().
(Unordered) multinomial regression is provided by the multinom() function in the nnet package.
In both cases, the dependent variable must be a factor. Logistic, ordered logistic, and multinomial
regression with R are explained in https://rpubs.com/rslbliss/r_logistic_ws.

4.4 Regression: Mediation

4.4.1 Package mediation. For estimating indirect effects in models with one mediator,
the recommended R package is mediation (Tingley et al., 2019), consult this manual for more
information. This package can handle a continuous outcome variable in combination with a
continuous, ordered, or binary moderator as well as a binary outcome variable with a continuous
or binary moderator. In all cases, it can handle both continuous and binary predictors (or
treatment variables). In addition, it can control for continuous and binary covariates.

An important advantage of this package is its ability to perform a sensitivity test on
the indirect (mediated) effect. How sensitive is the estimated indirect effect to unobserved
common causes of the mediator and the outcome variable? The mediator variable is normally
not randomized, so it can be affected by an unobserved covariate that also affects the outcome
variable. These effects may be incorrectly attributed to the effect of the mediator on the outcome
variable and, as a consequence, to the indirect effect of the predictor via the mediator on the
outcome.

An unobserved common cause of the mediator and outcome variable would create a
correlation between the residuals in the model predicting the mediator and the residuals in the

https://rpubs.com/rslbliss/r_logistic_ws
https://web.mit.edu/teppei/www/research/mediationR.pdf
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model predicting the outcome. The sensitivity analysis estimates the indirect effect and its
confidence interval for different values of the correlation among the residuals.

A downside to this package is that we have to estimate two regression models ourselves:
one with the mediator as the dependent variable, the other with the outcome as the dependent
variable. This allows us, however, to report and check the two regression models with the tools
provided in Section 3.3.

Also note that interactions must be included in the regression formula as separate terms
for the conditional and interaction effects, e.g., y ~ x1 + x2 + x1:x2 instead of y ~ x1*x2
and the argument INT = must be set to TRUE in the mediate() function.
# Estimate the indirect effect of sex via negative emotions on opinion about
# governmental intervention.

# Load the mediation package.
library(mediation)

# Estimate the regression model for the mediator.
fit_mediator <- lm(negemot ~ age + sex + ideology, data = glbwarm_spss)
# Estimate the regression model for the outcome.
fit_outcome <- lm(govact ~ age + sex + ideology + negemot, data = glbwarm_spss)
# Estimate the indirect effect (may take some time).
fit_indirect <- mediate(fit_mediator, fit_outcome, #the two regression models

treat = "sex", #the predictor or treatment variable name
mediator = "negemot", #the mediator name
sims = 1000, #number of simulations
boot = FALSE #use bootstrapping or parametric estimation
)

# Show results:
# ACME = Average Causal Mediated Effect (= indirect effect).
# ADE = Average Direct Effect.
summary(fit_indirect)

##
## Causal Mediation Analysis
##
## Quasi-Bayesian Confidence Intervals
##
## Estimate 95% CI Lower 95% CI Upper p-value
## ACME -0.0971 -0.1817 -0.01 0.022 *
## ADE -0.0106 -0.1651 0.15 0.912
## Total Effect -0.1077 -0.2816 0.07 0.224
## Prop. Mediated 0.7455 -5.5105 7.41 0.222
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Sample Size Used: 815
##
##
## Simulations: 1000

It is more attractive to present the direct and indirect effects in a diagram. The code
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below creates a diagram using the ggplot2 package.
# Plot the mediation diagram with ggplot2.
# NOTE: Make sure that you have stored the mediation results in an object named
# fit_indirect. Change the outcome variable name in the code below.

# Create coordinates for the variable names.
data.frame(x = c(0.3, 0.5, 0.7), #hor. coordinates of labels

y = c(0.1, 0.3, 0.1), #vert. coordinates of labels
hjust = c(1, 0.5, 0),
vjust = c(0.5, 0, 0.5),
label = c(fit_indirect$treat, #treatment

fit_indirect$mediator, #moderator
"govact"), #outcome variable name ## ADAPT! ##

# Create start and end coordinates for the arrows
xstart = c(0.3, 0.3, 0.5),
xend = c(0.5, 0.7, 0.7),
ystart = c(0.1, 0.1, 0.3),
yend = c(0.3, 0.1, 0.1)
) %>%

#create and show the plot
ggplot(aes(x, y)) +

#arrows
geom_segment(aes(x = xstart, y = ystart, xend = xend, yend = yend),

arrow = arrow(length = unit(0.06, "npc"), type = "closed"),
color = "gray60") +

#variable names
geom_label(aes(label=label, hjust = hjust, vjust = vjust),

fill = "gray60", color ="white", size = 6
) +

#direct and indirect effect results
geom_text(aes(x = 0.4, y = 0.2, hjust = 1, vjust = 0, label = paste0("b = ",

format(round(fit_mediator$coefficients[3],digits=2), nsmall=2)))) +
geom_text(aes(x = 0.6, y = 0.2, hjust = 0, vjust = 0, label = paste0("b = ",

format(round(fit_outcome$coefficients[10],digits=2), nsmall=2)))) +
geom_text(aes(x = 0.5, y = 0.11, hjust = 0.5, vjust = 0,

label = paste0("Direct: b = ",
format(round(fit_indirect$z.avg, digits = 2), nsmall = 2), ", 95%CI[",
format(round(fit_indirect$z.avg.ci[[1]], digits = 2), nsmall = 2), ", ",
format(round(fit_indirect$z.avg.ci[[2]], digits = 2), nsmall = 2), "]"))) +

geom_text(aes(x = 0.5, y = 0.09, hjust = 0.5, vjust = 1,
label = paste0("Indirect: b = ",

format(round(fit_indirect$d.avg, digits = 2), nsmall = 2), ", 95%CI[",
format(round(fit_indirect$d.avg.ci[[1]], digits = 2), nsmall = 2), ", ",
format(round(fit_indirect$d.avg.ci[[2]], digits = 2), nsmall = 2), "]"))) +

coord_cartesian(xlim = c(0.2, 0.8), ylim = c(0, 0.4)) +
theme_void()

The sensitivity of the estimated mediation effect to confounders can be assessed with the
medsens() function in the mediation package. Feed the object with the mediation results to
this function and, if needed, adjust the size of the steps for the residuals correlation (default
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sex

negemot

govact

b = −0.23b = −0.23b = −0.23 b = 0.43b = 0.43b = 0.43

Direct: b = −0.01, 95%CI[−0.17, 0.15]Direct: b = −0.01, 95%CI[−0.17, 0.15]Direct: b = −0.01, 95%CI[−0.17, 0.15]
Indirect: b = −0.10, 95%CI[−0.18, −0.01]Indirect: b = −0.10, 95%CI[−0.18, −0.01]Indirect: b = −0.10, 95%CI[−0.18, −0.01]

Figure 7 . Main results of a mediation model presented as a causal diagram.

= 0.1) that must be checked. See the package documentation and manual for more plotting
options.
# Execute and plot the sensitivity of the indirect effect to confounders (may
# take some time).
fit_sens <- medsens(fit_indirect, rho.by = 0.05)

# Plot the sensitivity results.
plot(fit_sens, sens.par = "rho")
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Figure 8 . The sensitivity of the indirect effect to confounders.

The dashed horizontal line represents the point estimate of the indirect effect reported
above. It is the expected value if the residuals of the mediator and the residuals of the outcome
variable are uncorrelated. In this case, the estimated indirect effect is not confounded. This
point estimate is a plausible value (namely, within the 95% confidence interval) if the correlation
between the residuals is negative. This is the case if the confounder is positively correlated with
the mediator and negatively correlated with the outcome variable or the other way around.

In contrast, a positive correlation between the residuals decreases the size of the negative
indirect effect and turns it into a positive effect around a correlation of 0.5. Around a correlation
of 0.40 (see summary(fit_sens) for the exact number), zero is included in the confidence interval.
For correlations above 0.40, we are no longer confident that the indirect effect is negative. A
correlation of this size between the residuals requires a confounder that is strongly correlated

https://web.mit.edu/teppei/www/research/mediationR.pdf
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(above 0.60) with both the mediator and the outcome variable (0.60 * 0.60 = 0.36). If we can’t
think of such a confounder, we can be quite confident that the indirect effect is negative.

4.4.2 Package psych. As an alternative, the psych package (Revelle, 2019) also offers
a mediate() function to estimate a mediation model. It handles models with a single mediator
and models with parallel mediation: two or more mediators without effects between mediators.
Like the PROCESS macro for SPSS (A. F. Hayes, 2013), the mediat() function in the package
performs all regression analyses in one go and it uses bootstrapping to estimate the confidence
interval of the indirect effect.

This function automatically plots the results as a causal diagram. It cannot handle factors,
so you have to replace them by 0/1 variables beforehand. The following code shows how to
create a dichotomous variable female (0 = no, 1 = yes) from the factor sex in glbwarm_spss
(using the tidyverse function mutate()):

glbwarm_spss <- mutate(glbwarm_spss, female = ifelse(sex == 'female', 1,
0))

More complicated mediation models can be estimated with packages for structural equation
modelling (Section 4.7).

4.5 Regression: Moderation

Moderation in linear regression analysis is exemplified in Section 3.3.3. This approach
also applies to other types of regression models (Section 4.3).

Mean-centering of predictor or moderator variables is relatively easy, because we directly
get the mean of a variable with the mean() function.
# Mean-centering in basic R, ignoring missing values.
dataset$newvariable <- dataset$variable - mean(dataset$variable, na.rm = TRUE)
# Mean-centering in the data frame with tidyverse, ignoring missing values.
dataset <- dataset %>%

mutate(newvariable = variable - mean(dataset$variable, na.rm = TRUE))
# Mean-centering within a regression formula, ignoring missing values.
fit <- lm(y ~ I(variable - mean(dataset$variable, na.rm = TRUE))*anothervariable)

4.6 Regression: Multilevel

Multilevel models can be estimated with the the nlme package (Pinheiro, Bates, & R-
core, 2019) or lme4 (Bates, Maechler, Bolker, & Walker, 2019). The first package allows for
autocorrelated or heteroscedastic individual-level errors whereas the second package supports
cross-nested random effects.

In the functions of the nlmepackage, lme() for linear models and nlme() for non-linear
models, the fixed effects of the model are specified with a formula in the usual way. In addition,
the random = argument specifies effects that vary at a higher level.

The functions lmer() and glmer() in the lme4 package estimate multilevel models for
linear and generalized linear models respectively. Random effects are added to the model formula
using a vertical bar (|). For example, (1 | subject) adds random intercepts at the subject
level, while (1 + age | subject) adds varying intercepts and varying slopes for age at the
subject level as well as a covariance between the random intercepts and slopes. Note that
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subject must be the name of a variable identifying subjects as higher level units. For the
specification of more complicated multilevel models, see Using R and lme/lmer to fit different
two- and three-level longitudinal models (Magnusson, 2015).

Non-linear multilevel models, for example, multilevel logistic regression models, are notably
hard to estimate. For this type of models, a Bayesian approach with MCMC estimation is
usually preferred. The rstanarm package (Gabry & Goodrich, 2019) contains functions that
have the same structure and the same type of output as the multilevel functions in the lme4
package. The companion manual Help, My Collaborator Goes Bayesian! shows how to estimate
multilevel models with the rstanarm package.

4.7 Structural Equation Modelling

The lavaan package (Rosseel & Jorgensen, 2019) for structural equation modelling was
created and is maintained by an active research group specialized in structural equation modelling.
Recent developments include multilevel SEMs and Bayesian approaches.OpenMx is another SEM
package (Boker et al., 2019) for R that is actively developed. A third popular SEM package in
R is sem.

In all packages, a model must be specified (typed) as a set of structural equations, which
are similar to regression formulas. Standalone free software (Onyx) is available in which a
structural equation model can be drawn and the resulting lavaan or OpenMx model code can be
saved and used in R. In addition, Onyx can read and visualize models created in OpenMx. The
semPlot package can create diagrams from lavaan results.

For more information, consult the Psychometric Models and Methods task view.

4.8 t Tests

It is possible to use the R function for linear (regression) models (lm()) to execute one-
sample, paired-samples, and independent-samples t tests. The stats package also contains the
t.test() function for this purpose. This function offers the option to set the test value (also
for the mean difference in a paired-samples or independent-samples t test), the direction of the
test (left-sided, right-sided, and two-sided), and the confidence level. Another advantage of the
t.test() function is that it yields a results object of class htest, which can be summarized in
APA6 format with the apa_print() function in the papaja package (see Section 5.1.2). The
code below exemplifies a right-sided one-sample t test.
# Right-sided, one-sample t-test with 4.0 as hypothesized population value.
one_sample <- t.test(

x = glbwarm_spss$govact, #test variable
mu = 4.0, #test value
alternative = "greater", #"two.sided" (default), "greater" or "less"
conf.level = 0.95 #confidence level

)
# Have a look at the contents of results object one_sample.

Note that the command does not have a data = argument, like lm(), so you have to
supply the name of the data frame with the variable(s) that you use in the test. In addition,
one-sided tests yield a confidence interval with plus or minus infinity (Inf or -Inf) as one of
the boundaries.

https://rpsychologist.com/r-guide-longitudinal-lme-lmer
https://rpsychologist.com/r-guide-longitudinal-lme-lmer
https://wdenooy.github.io/Switch2Bayesian/index.html#32_r_rstanarm_package
http://lavaan.ugent.be/
http://onyx.brandmaier.de/
https://cran.r-project.org/web/views/Psychometrics.html
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A paired-samples t test is quite straightforward: just add a second variable with the y =
argument and set the paired = argument to TRUE (see the code below). An independent-samples
t test is a bit more complicated. First, we have to determine if the two groups have equal
population variances because this affects the way the standard error must be calculated. We
can do this with the var.test() function in the stats package. In the code below, we use the
p.value of this test in the var.equal = argument of the t test. The code (result_var$p.value
> 0.05) returns TRUE if the equal variances test is not significant at the .05 level (the p value is
above .05) and it returns FALSE otherwise. Instead of telling the t test manually whether the
equal variances assumption is true or false, we let the results of the equal variances test provide
this information. This way, we are sure that the right option is selected.
# Two-sided paired samples t test: Average difference between positive and
# negative emotions is zero in the population (nonsensical example).
paired_samples <- t.test(

x = glbwarm_spss$posemot,
y = glbwarm_spss$negemot,
paired = TRUE,
mu = 0 #hypothesized difference x - y

)

# One-sided independent-samples t test: Do females score on average 1.0 higher
# than males in their opinion on government intervention?
# First: test on equal variances (in stat package).
result_var <- var.test(govact ~ sex, data = glbwarm_spss)
# Second: t-test using the equal variances test result.
indep_samples <- t.test(

govact ~ sex, #lm() formula!
data = glbwarm_spss, #works only with a formula
mu = 1.0, #test value: females are second category
paired = FALSE, #not a paired t test
var.equal = (result_var$p.value > 0.05), #equal variances?
alternative = "less" #males are coded 2 (or 1), females 1 (or 0)

)

4.9 Time Series Analysis

The TimeSeries task view presents a large variety of packages and functions for time series
analysis in R. The packages assume that you have your dates and times correct in your R data
set. Dates and times are notoriously troublesome because they are complicated (leap years, time
zones, . . . ) and there are different conventions for storing dates and times on computers. I
recommend to use the lubridate package (Spinu, Grolemund, & Wickham, 2018) for reading
and manipulating dates and times. See the chapter on dates and times in R for Data Science
(Wickham & Grolemund, 2017) for more information.

Check: Always compare some dates/times in your R data set to your original data
set.

5 Reproducible Analyses With R Markdown

The document that you are reading at this moment was created in R. It contains both
the text that you are reading and the R code analyzing the data and creating the tables and

https://cran.r-project.org/web/views/TimeSeries.html
https://r4ds.had.co.nz/dates-and-times.html
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plots displaying the results. The document is written in R Markdown, a relatively simple text
processor. R Markdown documents can be rendered into PDF (LaTeX), HTML, and sometimes
Word documents.

Anyone who has the R Markdown document and the data sets used in it can reproduce
the results as well as the results tables and plots. Every step in the analysis process and every
report detail can be checked and, where necessary, criticized and improved. Mastering R and
understanding the structure of an R Markdown document makes the analyses and report fully
transparent.

5.1 Integrating Text and Code

Download the R Markdown document HelpMyCollaboratorUsesR.Rmd that generates
the document you are now reading, save it to your current R project directory, and open it in
RStudio to see an example. The document illustrates many features of R Markdown, so you
may use it as a reference for your own work. If you see a feature in the PDF or web version of
the document that you want to use, check the R Markdown document to find out how it is done.

Figure 9 . Part of the R Markdown document HelpMyCollaboratorUsesR.Rmd.

5.1.1 Code chunks. Figure 9 shows a small part of the R Markdown document that
generates the current document. Several noteworthy features are marked. Let us focus on the
way R code is incorporated in the document. At line 400, a code chunk starts, which has a
grey background. Commands and comments can be included in a code chunk just like they are
included in a script file (Section 2.4.4).

A code chunk starts with a header (in between {}). The header starts with the letter r
indicating that the code chunk contains R code; it can also contain python and other types of
code. Then, an optional name is given to the code chunk. Names show up in the outline of code
chunks (the drop-down list in the bottom-left of the R Markdown window), so an informative
name helps to quickly locate the code chunk later on.

https://wdenooy.github.io/Switch2R/HelpMyCollaboratorUsesR.Rmd
https://wdenooy.github.io/Switch2R/HelpMyCollaboratorUsesR.pdf
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In addition there are several options for the code chunk, two of which are shown here.
The option echo= determines whether (TRUE) or not (FALSE) the code will be shown in the
output document. Normally, we hide code but the current document shows most of the
code for learning purposes. The option eval= determines whether (TRUE) or not (FALSE) the
code will be executed. Usually, we want to execute the code. For more information, see
https://yihui.name/knitr/options/#chunk-options.

Do not economize on comments within code chunks. They allow you to incorporate your
thoughts about the R code in the R markdown document. Thus, you can document why you
do what you do, which approaches you tried that did not work (and why), what remains to be
done, and so on.

The R Markdown document is created (knitted) line by line from the start to the end.
Code chunks are executed when they are encountered in this process. A data set opened in a
code chunk or a results object created in a code chunk are available to later code chunks but not
to previous code chunks.

5.1.2 Inline APA6-style statistical results. Code and text can be integrated even
more tightly. R functions can be embedded within sentences, so code results become part of
the sentence. We can pull the mean and standard deviation of the opinion about government
intervention for males from the data frame with the following code (using the printnum()
function in papaja):
# R code for inline use within a sentence.
`r printnum(mean(glbwarm_spss$govact[glbwarm_spss$sex == "male"]))`
`r printnum(sd(glbwarm_spss$govact[glbwarm_spss$sex == "male"]))`

Pay attention to the special quotation marks and the r indicating that we are dealing
with R code. Without the quotation marks and r letter, the code will not work. If we include
this code in a sentence, we get the following result:

Males are on average less positive about government action (M = 4.45, SD = 1.53 than
females (M = 4.72, SD = 1.16).

Note that the numbers are pulled directly from the data set, so we cannot make mistakes
by typing errors. In addition, if we discover and correct a mistake in the data, re-creating the
output document will ensure that the new results are shown in the text.

The papaja package also contains functions that extract relevant statistical results from
a results object and format them according to the APA6 guidelines. The following command
formats the results of the independent-samples t test from Section 4.8, which we stored in the
object indep_samples:
`r apa_print(indep_samples)$full_result`

Embedded within a sentence: This difference is statistically significant, ∆M = 0.27, 95%
CI [−∞, 0.43], t(741.55) = −7.66, p < .001.

5.1.3 Cross-references and literature references. R Markdown by itself does not
support cross-references to sections, tables, figures, or equations. The bookdown package (Xie,
2019a) adds these features. This is not an ordinary package that you load with the library()
function. It must be used when the R Markdown document is knitted into the output document.
This happens automatically when you use the APA6 journal article template as your starting
point for a new R Markdown document (see Section 5.2).

With the bookdown package in place, you can reference a table or figure using the name of

https://yihui.name/knitr/options/#chunk-options
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the code chunk that creates the table or figure. For example, \@ref(tab:papajatable) would
insert the number of the table created with papaja in Section 3.3.2 in the text, because the
code chunk creating this table is named papajatable(check the R Markdown document to see
this). Similarly, \@ref(fig:coefplot)adds the number of the figure with the plotted regression
coefficients in Section 3.3.4. Note the tab: and fig: parts, which are mandatory for references
to tables and figures.

If you want to cross-reference a section, you have to add a label to the section header, for
example, {#crossreferences} for the present section. Now, \@ref(crossreferences) inserts
the number of this section in a sentence, for example, this is a reference to Section 5.1.3.

References to literature are best created from a BibTeX database. In a BibTeX database,
each entry has an identifier, for example,WickhamDataScienceImport2017 could be the identifier
of the R for Data Science book. In the top of the R Markdown document (also called the YAML
front matter), the name of your BibTeX-file should be mentioned in the bibliography: field.
See the R Markdown document HelpMyCollaboratorUsesR.Rmd for an example.

To include a reference to this book, add [@WickhamDataScienceImport2017] in your
sentence. The square brackets [] will be replaced by parentheses. Omit the brackets if you do not
want to have parentheses. If you do not want to show the author names, put a minus sign before @.
You can add text within the brackets, for example: [see @WickhamDataScienceImport2017:
211].

It is a bit of a hassle to create a BibTeX file with all references and using the IDs from this
file to add references to literature in your R Markdown text. The RStudio add-in citr makes this
a lot easier, especially if you store your literature in Zotero (see https://github.com/crsh/citr).
For more information, read the concise and handy book Bookdown. Authoring Books and
Technical Documents with R Markdown (Xie, 2016), which is also available online.

When you knit the document, a list of references will be added automatically, containing all
literature referred to in the text. This requires some settings in your R Markdown file, which won’t
be discussed here (see, for example, https://rmarkdown.rstudio.com/authoring_bibliographies_
and_citations.html) because they are standard provided in the APA6 R Markdown template,
which we recommend to use. Let us turn to this template now.

5.2 APA6 Journal Article Template

Figure 10 . R Markdown templates dia-
log box.

The papaja package contains a template for an
APA6-style journal article. Once papaja is installed,
you can select the APA template when creating a
new Markdown file through the RStudio menu: Select
File, New File, R Markdown and in the dialog box
(Figure 10), select From Template and APA Article
(6th edition).

Browse through the R Markdown document
of this template. You can add author names and
affiliations, an abstract, keywords, line numbers, and
so on. Not all information will be nicely rendered in
HTML output but it should be in PDF.

https://wdenooy.github.io/Switch2R/HelpMyCollaboratorUsesR.Rmd
https://github.com/crsh/citr
https://bookdown.org/yihui/bookdown/citations.html
https://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html
https://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html
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5.3 Creating a HTML, PDF, and Word Doc-
ument

The R Markdown document is great for sharing
with your collaborators because they can check all
your work and add their own work. Especially in the code chunks, use comments a lot to explain
to your collaborators and to yourself the purpose of the code.

The R Markdown document, however, is not meant for the general reader or for publication
(although it would be great to add it as online materials to a publication). For the general reader
and publication, the R Markdown document must be rendered (“knitted”) into HTML for web
publication and PDF for paper printing (and journal submission). It is usually better to render
the document as HTML first because this is much faster than rendering a PDF. You can spot
errors and typos quickly in the HTML version and correct them before you render into PDF.

Rendering to PDF requires a LaTeX installation on your computer. RStudio refers you to
the websites where you can download and install LaTeX for your type of computer when you try
to render to PDF without a LaTeX installation. Downloading may take some time, especially
for Mac computers. Make sure that you have a fast and stable internet connection.

Rendering to PDF proceeds in several steps with a TeX file as one of the intermediate
steps. The APA template saves the intermediary TeX file, which can be edited in (free) software
like Texmaker or online applications such as Overleaf. In my experience, there are always some
technical and layout problems to be solved before the PDF output is fully satisfactory. For
example, a table footnote created with kableExtra escapes the special character $ for math
symbols by adding a \ before it. The combination \$ in table notes must be replaced by $ in
the TeX file.

A Word document can also be created from the APA template but this option is marked
as experimental, so we should not expect everything to render correctly. It can be more efficient
to open the rendered HTML or PDF in Word, if you need a Word document.

6 And More . . .

Finally, some pointers to additional R skills.

6.1 Data Wrangling: Preparing and Cleaning your Data

Apart from incidental recoding of values and custom table construction, this paper does
not discuss data management. For reproducible analyses, data cleaning should be part of the
R Markdown document. Unfortunately, data management is a vast territory that cannot be
summarized here.

For those who want to dive into this subject, I recommend the tidyverse approach as
presented in the book R for Data Science (Wickham & Grolemund, 2017), in particular Chapters
3 and 9-14. Chapter 3 of ModernDive: An Introduction to Statistical and Data Sciences via R
(Ismay & Kim, 2019) offers a more concise introduction.

6.2 Downloading Data from the Web

There are packages for scraping web data, for example rvest (Wickham, 2019b) and
httr(Wickham, 2019a). See, for example, this DataCamp course.

https://www.xm1math.net/texmaker/
https://www.overleaf.com/
https://moderndive.com/index.html
https://www.datacamp.com/courses/working-with-web-data-in-r
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6.3 Writing Your Own Functions

R is a set of functions. It is easy to write your own functions, see Chapter 15 in R for
Data Science (Wickham & Grolemund, 2017). The code below shows the general template for
creating a new function.
# Function template:
new_function_name <- function (argument1, argument2 = 0) {

#your code

return(what_you_want_to_return)
#or just return the last thing

}

6.4 Collaborating via Github

If you are part of a team working on the same research project, you would like to have an
easy way of working with several people on the same R Markdown document. What changes
and additions do your collaborators make to the document and how do they comment on your
work? If at some point mistakes have been introduced, can we roll back to a previous version?

Version control software combined with a cloud repository offers an answer to these
questions. Git is popular version control software and Github is a cloud repository designed for
working with Git. RStudio projects can be linked to Git and Github, see Using Version Control
with RStudio and links on that page for details (a good resource is Happy Git and Github for
the useR). This document uses Git and Github.

Once an RStudio project is linked to Git, the top-right panel in the RStudio interface
contains a Git tab for easy synchronization of the local R Markdown document that you are
working on and the remote document in the cloud (Github repository) that is accessible to all
collaborators.

1. When you start working on a file, download (Pull) the latest version from the repository,
so you are working on the latest version. The file(s) from the repository will replace your
local file(s).

2. When you are ready, upload your local version to the repository. First, Commit the
changes that you made to the file. This will make Git register a new version of the file and
remember the changes that you made. Second, upload (Push) your changed version to the
cloud repository (Github).

RStudio also supports another version control software: Subversion.

6.5 Conclusion

Do what you have been doing but do it more transparently and efficiently with R
and RMarkdown.

https://support.rstudio.com/hc/en-us/articles/200532077
https://support.rstudio.com/hc/en-us/articles/200532077
http://happygitwithr.com/
http://happygitwithr.com/
https://github.com/WdeNooy/Switch2R
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